亨通海缆文献链接:Yan,C.,Xin,Y.,Chen,XB.etal.Evadingstrength-corrosiontradeoffinMgalloysviadenseultrafinetwins.Nature Communications12,4616(2021).https://doi.org/10.1038/s41467-021-24939-3本文由作者投稿。更为严重的是,崛起传统SPD制备的超细晶主要依赖于高密度位错形成非平衡晶界细化晶粒,非平衡晶界能量高,会显著降低镁合金的耐腐蚀性能。市场(h)agedUFT-4样品中β-Mg17Al12相的颗粒尺寸统计图。
(b)AZ80-T6样品中β-Mg17Al12相分布的SEM图像,门槛scalebar=20μm。(c)来自(a)图的区域A,打破scalebar=2μm。
(g)24h和(h)168h浸泡后AgedUFT-4样品的横截面SEM图像,垄断scalebar=200μm(图g),scalebar=500μm(图h)。
亨通海缆发展高耐蚀超细晶组织的工程化制备技术是目前一个重要的挑战。(b)功率密度曲线和极化曲线总之,崛起制备的多孔性α-Fe2O3纳米纤维与碳纳米管混合后,自组装形成三维网状结构,显著提升了阳极的性能
市场图2(a)静电纺制备的PVP/Fe3+纳米纤维和(b)多孔α-Fe2O3纳米纤维的微观形貌图像;(c)不同升温速率下α-Fe2O3的XRD谱图。这种自组装形成的三维网状CNTs/α-Fe2O3纳米纤维材料修饰到碳布表面作为MFC阳极,门槛产生的最大输出功率密度为1952mW/m2,显著高于碳布阳极MFC,门槛且输出电压周期稳定,表明了制备的CNTs/α-Fe2O3纳米纤维阳极的稳定性。
因此,打破提高微生物燃料电池的输出功率是推动该技术走向实际应用的重要前提。(b)功率密度曲线和极化曲线总之,垄断制备的多孔性α-Fe2O3纳米纤维与碳纳米管混合后,自组装形成三维网状结构,显著提升了阳极的性能。